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Elasticity of rubber with smectic microstructure

M. J. Osborne and E. M. Terentjev
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 7 April 2000!

Using a physically motivated continuum model for the free energy of an elastomer with a smectic or lamellar
microstructure, we examine the effects of coupling between the smectic and the rubber-elastic degrees of
freedom on measurements of the layer structure and elastic moduli. In agreement with experiment, we find that
the elastic response to stretching along the layer normal is greatly increased by the smectic layering, while the
modulus parallel to the layers is unchanged. We show that Landau-Peierls instability of fluctuations in the layer
structure of ordinary smectic liquid crystals is removed by the elastic matrix. Consequently one sees Bragg
peaks in the diffraction pattern of a solid with one-dimensional order and we calculate the Debye-Waller
factors for these.

PACS number~s!: 61.30.Cz, 61.41.1e, 83.20.Bg
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I. INTRODUCTION

Liquid-crystal elastomers are materials displaying b
liquid-crystalline order and a sparse crosslinked network
flexible polymers. There are thus two types of degrees
freedom in elastomer liquid crystals, those associated w
liquid-crystalline order and those associated with the rubb
elastic matrix. These two degrees of freedom are coup
together and it is the interplay between them that gives
liquid-crystal elastomers their unusual mechanical charac
istics. One of the most startling is the effect of soft deform
tion in the case of nematic rubbers@1#. Here, for certain
modes of deformation, realignment of the director produ
an exactly equivalent molecular arrangement after defor
tion. Consequently, in the ideal case there is no energy p
alty for such deformations@2#.

In this paper we examine another case of rubbery ela
material with microstructure: lamellar or smectic elastome
Smectic elastomers and gels, or permanently crosslinked
works of polymer chains that spontaneously form smectic
lamellar phases, are just as frequent as the nematic o
From the symmetry point of view there is a great variety
possible phases, combining the one-dimensional~1D! smec-
tic order with various degrees of positioning and alignm
of mesogenic groups. We shall consider the most sim
smectic order, called ‘‘smectic-A’’ or lamellar La phase,
where the average molecular anisotropy axis is coaxial w
the layer normal. In other words, the nematic directorn ~the
principal axis of uniaxial optical birefringence! is locked per-
pendicular to the smectic layers. In many molecular syste
the smectic-A or La-lamellar order is all the material ca
achieve in terms of intermediate degree of order betwee
fully isotropic and a crystalline or glassy state. Examples
such systems, one way or another, involve polymer cha
that are prone to microphase separation: block copolym
@3,4# or polysurfactants@5#. Independently, a substantial e
fort has been put, over the years, into synthesizing
crosslinking the naturally liquid-crystalline polymers po
sessing smectic phases.

Figure 1 shows a schematic smectic-A alignment of side-
chain liquid-crystalline polymers. In fact, since their first a
pearance in the early 1980’s~e.g., Refs.@6# and @7#!, such
PRE 621063-651X/2000/62~4!/5101~14!/$15.00
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polymers are more frequently found smectic than nema
The reason for this is straightforward: a tendency for m
crophase separation between aligned rodlike mesog
groups and the polymer backbone results in the layered m
phology.

A crosslinking strategy in preparing smectic networks h
to take into account certain molecular constraints. In fact,
sketch in Fig. 1~c! illustrates that one needs to be careful
selecting the size of crosslinking molecular groups. From
geometric point of view they have to have a length equa
an integer of the smectic layer spacingd0 . A pointlike
crosslink would bind backbones confined within one int
layer plane. The same applies to a flexible chain binding t
backbones—this, in some sense, accounts for two point
crosslinks. A rodlike crosslink such as bi-functional grou
shown in Fig. 1~c! would bind backbones across a layer, if i
length is'd0 . Anything in between would create a stron
distortion of the local smectic order near an incommensu
crosslink@8# and, therefore, would depress the existence
the phase. The crosslinking of polymers in the smectic ph
creates a local dependence between the crosslink and
layer position and their relative movement along the la
normal should be difficult. We shall soon return to this poi
crucial to the understanding of smectic rubber elastic
Note that the position of crosslinks has no effect in the h
mogeneous nematic phase: one needs to break the tra

FIG. 1. Schematic drawing of mesogenic group arrangemen
smectic-A phase of~a! liquid-crystal, ~b! side-chain polymer with
the backbone confined between the layers, and~c! elastomer with
crosslinking groups~darkened! incorporated into the smectic layers
5101 ©2000 The American Physical Society
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tional symmetry of mesophase in order to experience su
coupling.

As with nematic networks, the conditions of crosslinkin
define the texture of the resulting mesophase. When the
work is formed in the isotropic phase or when no spec
aligning procedure is applied, the liquid-crystalline elastom
invariably forms a polydomain texture of very small chara
teristic size. Polydomain nematic and smectic elastomers
gels strongly scatter light and, thus, appear opaque. In c
trast, when the final crosslinking of the network is perform
in an aligned state~whether in a mesophase or in the isotr
pic state, for instance, by applying a stress or a strong m
netic field, which is then frozen in by crosslinking! the mon-
odomain liquid-crystalline phase results. In this way,
uniaxially stretching the material before final crosslinkin
Nishikawa and Finkelmann@9# have produced the require
symmetry breaking with a principal axis determining t
layer normal in resulting monodomain smectic-A elastomers.
The subsequent heating into the isotropic phase and coo
back into the smectic preserves this uniaxial alignment
posed by the stretching, with layers spontaneously form
in the plane perpendicular to the stress axis.

In this paper we develop a universal continuum desc
tion of monodomain nematic and smectic-A elastomers, ex-
amining the couplings between the director, the layer con
mation, and the underlying rubber deformations. In
proposed theory, the smectic order parameterucu is allowed
to change between zero~giving the correct limit of nematic
rubber! and one~describing a strong smectic order!. We cal-
culate the effect of smectic order on the effective elas
moduli and compare the results with the experimental dat
Nishikawa and Finkelmann. We also reexamine the effec
layer fluctuations@10# and give an improved description o
the Bragg scattering of smectic layers, with Debye-Wa
factors determined by the crosslinking density and sme
order parameter.

II. THE CONTINUUM MODEL

In order to understand the physical properties of sme
elastomer networks, we need to examine the relevant v
ables describing different aspects of their behavior. We s
always compare these with the case of nematic elastom
where there is a better theoretical understanding and m
experimental data. In some materials this comparison h
direct benefit because they actually possess a nematic p
at a higher temperature, which then transforms into
smectic on cooling below the critical pointTNA . In many
other cases there is no preceding nematic phase: some l
crystals transform directly from isotropic into the smecticA
phase; the lamellar phaseLa is often the first stage of sym
metry breaking from the isotropic homogeneous mixture
polymer blend. However, the final state of smectic elastom
should have macroscopic properties qualitatively the sa
regardless of how this phase has been reached. Therefor
results and conclusions we shall obtain by examining e
tomers with nematic order and the added effect of laye
will be equally applicable to all lamellar systems once t
nematic degrees of freedom are integrated out.

We, therefore, write the continuum free energy as the s
of the contributions for the ordinary nematic, the ordina
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smectic, and the elastomer; these are the three relevan
grees of freedom. These degrees of freedom couple w
each other so that we have, in principle, three couplings
tween pairs of these to include in the free energy. Let
describe each of the contributions to the free energy in tu
starting from the small deformation limit of anisotropic ela
tic rubber.

A. Linear elasticity of nematic rubbers

As a first step in any continuum elastic theory, one ide
tifies the translational degree of freedom, the vector of lo
displacement in the elastic networkV(r), with the coordinate
r measured in the undistorted body. Here and below
should take care distinguishing this upper-case notation f
the more traditionalv(r). We shall see later that in a phas
where a microstructure has a broken translational symm
even the constant absolute value of local displacement,
a componentVz along the layer normal in the case o
smectic-A, will contribute to a coupling free energy. In con
trast, in a standard elasticity one only finds a role for relat
translations expressed by the nonuniform part of the d
placement vectorv(r). For instance, this describes th
change in the end-to-end distance of a network strandR
5R01v. The gradients define the small deformation ten
vab5]va /]xb , the full affine Cauchy strain tensor bein
thenlab5dab1vab . Only the symmetric part«ab5 1

2 (vab
1vba) contributes to the ordinary elastic response. In
frame-independent form, the free-energy density of
uniaxial material is given by

Fel5C1~n•«̃=•n!212C2 Tr@«= #~n•«̃=•n!1C3~Tr@«= # !2

12C4@n3«̃=3n#214C5~@n3«̃=•n# !2, ~1!

with n the local axis of anisotropy~the undistorted nematic
director or the smectic layer normal! and «̃ab5«ab
2 1

3 Tr@«= # dab the traceless part of strain. In the given form
Eq. ~1! is a standard expression for a uniaxial elastic mate
@12# and has exactly the same form as the one used in
linear theory of nematic elastomers@2#, which is a result of
the same point symmetry of the two phases. When the di
tion of n is chosen along thez axis, the elastic energy densit
takes a more familiar uniaxial form

Fel5C1«̃zz
2 12C2«̃zzTr@«= #1C3~Tr@«= # !2

12C4~ «̃xx
2 12«̃xy

21 «̃yy
2 !14C5~ «̃xz

21 «̃yz
2!. ~2!

One expects that in a rubber or dense polymer melt the b
modulusC3 is very large,C3;10921010 J/m3. The three
moduli C1 , C4, andC5 are of the same order of magnitud
given by a typical rubber shear modulusm;1042106 J/m3.
The anisotropic compression correctionC2 is usually much
smaller in polymer networks, determined by secondary
fects of non-Gaussian corrections and semi-softness. S
shear moduliCi are much smaller than the bulk modulusC3,
polymer materials deform at essentially constant volume
molecular theory of nematic elastomers@1# gives particular
values to the shear moduli:

C15cxkBT, C250, ~3!
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C45
1

2
cxkBT, C55

1

2
cxkBT

~r 11!2

r
,

where m5cxkBT is the rubber modulus in the isotrop
phase (cx proportional to the crosslinking density! and r
5 l i / l' is the anisotropy of polymer backbones forming t
network, spontaneously liquid crystalline or with anisotro
induced by the mesophase.

When the variation of the principal anisotropy axisn is
allowed, the coupling of the director fluctuations or induc
rotations to the underlying rubbery network is described
two linear relative-rotation terms in the energy density:

F rot5
1
2 D1@n3~V2v!#21D2 n•«̃=•@n3~V2v!#, ~4!

where the small rotation vectorv is a convenient measure o
variation of the unit vectorn, v5@n3dn#. The elastic en-
ergy ~4! arises when the director rotates differently from t
underlying elastic matrix: at small deformations the lat
rotation is often represented by a vectorVa5 1

2 eabgvbg , or
V5 1

2 curlv, proportional to the antisymmetric part of stra
v bg

A . The orientations ofv andV are the axes of respectiv
rotation in the two fields,n andv, their magnitudes are th
angles of these local rotations, see Fig. 2. First written by
Gennes on symmetry grounds@11#, the relative-rotation cou-
pling terms have been later obtained in the small-strain li
of the full microscopic theory, giving the particular values
the constants

D15cxkBT
~r 21!2

r
, D25cxkBT

12r 2

r
. ~5!

As expected, in the isotropic limitr→1, both sets of con-
stants, Eqs.~3! and ~5!, reduce to their values in classic
Laméelasticity,D15D250 andC152C452C55m.

The relative-rotation coupling~4! penalizes local uniform
director rotations with respect to the elastic matrix. For
stance, if no elastic strain is allowed in the sample, this
pression reduces toF rot5

1
2 D1(dn)2. Such a breaking of ro-

tational invariance is not found in ordinary liquid crysta
There, like in standard linear elasticity, only the gradients
the deformation field contribute to the physical effec
through the celebrated Frank curvature elastic energy den

FIG. 2. The relative rotation coupling between the elastic ma
and the uniaxial layer system: the magnitude of local matrix ro
tion V5

1
2 curl v ~or rather its component perpendicular ton) has to

be the same as the director rotation anglev.
y

r

e

it

-
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ity

FFrank5
1
2 K1~div dn!21 1

2 K2~n curldn!2

1 1
2 K3@n3curldn#2. ~6!

In most systems one finds the Frank constantsK1,2,3 of the
same order of magnitude, crudely estimated as;kBT/a with
a being a molecular length, givingK;10211N @13#. The
only real exception is main-chain liquid-crystalline polyme
where, in the hairpin regime, the splay constantK1 is much
larger. We shall not consider such special cases here
will, therefore, assume that a physically important leng
scale, the elastic penetration depthj5AK/m, is a small
quantity of orderj;1028 m.

B. Smectic energy density

Smectic or lamellar order is characterized by a 1D wa
of density or composition,r(z)'r01ucucos(q0z1F). Here
z is measured along the layer normal, the amplitude of mo
lation ucu is a critical function of temperature,q052p/do is
the periodicity wave number, andF(r) an arbitrary phase
@14#. Far below the smectic phase transition this modulat
may be coarsened from the simple cosine form to a m
steplike profile. Generally, from the symmetry point of view
the phase transition directly from the isotropic phase
smectic-A ~a change between full rotational symmetry a
the point-groupD`h representing a simple cylinder! is ex-
actly the same as that between the isotropic and nem
phases and it has to be first order. This is the case in m
systems that are candidates for smectic elastomers
particular—all lyotropic or block-copolymer lamellar phase
~A comprehensive description of symmetry changes dur
phase transformations in liquid crystals is given in Ref.@15#.!
The transition between an established nematic phase
smectic-A can, by symmetry, be second order. However,
practice, in the majority of ordinary liquid crystals with th
I -N-A phase sequence, theN-A transition appears to be firs
order, cf.@13#. In contrast, in elastomers, due to the rando
field effect of quenched crosslinks@8#, one expects to find a
continuous transition withucu→0 much more frequently.

When the smectic order is well established, the phase
layer modulation can be written asF52q0U(r) with U(r)
describing the layer displacement. Note the upper-case n
tion which, as in the case of network displacementV(r) in
the previous section, includes both theconstantdisplacement
and the spatially varying partu(r). The layer displacement is
not a vector but only a component along the layer normaz
or n for the smecticA): displacements in the layer plan
have no physical meaning for smectic liquid crystals. T
continuum description of smectic and lamellar phases u
the gradients of nonuniform layer displacementu(r) as ef-
fective strain fields, in this way any possible constant con
bution to the displacement fieldU disappears from the analy
sis. As described in the following section, in a smec
rubber one finds a coupling of relative translationsU andVz ,
which is sensitive to their uniform parts as well. The corre
elastic free energy must be invariant under the symme
transformations of the phase, given here by the point-gr
D`h , the 1D translational periodicity alongz, and the con-
dition of layer continuity. At leading order, the free-energ
density of a smectic-A takes the classical form@13#

x
-
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FsmA5 1
2 B~“zu!21 1

2 K~“'
2 u!2, ~7!

where“'
2 5“x

21“y
2 describes the mean curvature of the la

ers, with the constantK equivalent to the splay Frank con
stant K1 of a nematic and theB term penalizes the laye
compression. The arguments leading to this expression
made under the assumption that the nematic directorn is
always perpendicular to the layers, coinciding with the lo
layer normalk. Usually, this is a fairly good approximation
However, close to theN-A transition, the constraint onn
being perpendicular to layers becomes weaker and the d
tor may independently fluctuate with respect to the layer n
mal. Strictly, even deep in the smectic-A phase, one should
not regard the director as rigidly locked—it is just that d
viations ofn from k are penalized by a large energy.

One needs to examine how this nematic-smectic coup
affects the physical properties in corresponding elastom
In particular, this is important because one expects the di
tor fluctuations to be affected by the nematic relative rotat
coupling to the rubbery network~4!. The mean-field Landau
free-energy density describing theN-A phase transition and
the coupling to nematic director fluctuations is thorough
discussed in the literature and summarized in monogra
e.g., @13#. The corresponding gradient terms describing
layer distortions are written as@14#

F̃smA5 1
2 giq0

2ucu2~“zu!21 1
2 g'q0

2ucu2~“'u1dn!2, ~8!

where the first term is the layer compression, leading dire
to theB term in Eq.~7! with B5giq0

2ucu2. The second term
with b'5g'q0

2ucu2, is the penalty for the deviation of loca
directordn from the locally rotated layer normal. The value
giÞg' because of the uniaxial nematic anisotropy, b
should be of the same order of magnitude. In a thermotro
smectic-A liquid crystal, the value for the layer compressio
constant isB>106 J/m3. One finds a similar value in lamel
lar block copolymers, while in diluted lyotropic lamellar sy
tems, B can be much lower@16#. Another relevant length
scale emerges from the smectic elastic energy density~7!, the
ratio AK/B.d0 , giving the smectic layer spacing.

C. Relative translation coupling

The formation of a rubbery network in a smectic or lam
lar phase results in preferential placement of crosslinks w
respect to the layers. In the geometry of Fig. 1~c!, the
crosslinks are locked within the layer, as the real mesoge
side-chain polymers would indeed do. The sketch in Fig
shows the crosslinks within the backbone in the interla
spacing; in the synthetic work of Gebhard and Zentel@17#
the crosslinking has been of this type. In any case th
clearly is a barrier for a crosslinking ‘‘point’’ to instantly
cross into the neighboring layer. Of course, crosslinks
freely migrate within their chosen layer plane. According
only thez component of the full crosslink displacement ve
tor V participates in the relative translation coupling, sho
in Fig. 3 and Eq.~9!. Therefore, any attempt to deform th
rubbery network~which amounts to the relative moveme
of crosslinks, described by the displacement vectorV, in-
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cluding the possible constant part! should produce an energ
penalty, if the neighboring layers do not move in phase,
Fig. 3.

Unusually, such a coupling does not have to involve s
tial gradients of the displacement fieldsV andU. In a tradi-
tional elastic continuum with only one relevant deformati
field, V(r) or U(r), the free energy cannot depend on suc
field but only on its gradients, otherwise a constant displa
ment of the whole sample would cost energy. In nema
elastomers, because the second deformation field was o
tational, we found a relative-rotation coupling of unifor
fields of orientation. In a smectic system, with both deform
tion fieldsV andU corresponding to translations, we have
energy penalty on their localrelative magnitude along the
layer normal.

For small relative displacements between the layers
the elastic medium the penalty must be harmonic with
free-energy density of

F trans5L @U~r!2Vz~r!#2. ~9!

Since no spatial derivatives are involved in Eq.~9! it is es-
sential to separate the deformation fieldsU andVz into their
constant components, uniform~average! strains and fluctua-
tions with respect to these average values, in both layer
elastomer subsystems. The analysis in Ref.@18# shows that
there is a rigid constraint on the constant strains involv
the displacement along thez axis, the layer normal. Essen
tially, an imposed uniform elastic shearvzx or extensionvzz
would result in a corresponding equal uniform layer rotati
“xu or extension“zu. In contrast, a shear or an extension
the layer plane,vxz or vxx , do not have such a direct effec
on the layers. In this paper we do not consider such impo
shears and mostly concentrate on the fluctuations and e
tive elastic constants. Therefore, the harmonic coupling
local fluctuationsL @u2vz#

2 will be sufficient in most cases
In a continuum theory one requires an estimate for

new coupling constantL. Equation~9! describes an effec
combining the entropic rubber elasticity and the smec
layer potential barrier, hence the characteristic energy s
is a(c) kBT. Here a is an unknown coefficient of orde
unity, which however must depend on the smectic order
rameterucu, tending to zero near a transition. The continuu
model of a rubbery network has a short distance cutoff atR0,
the characteristic distance between connected crosslin
points ~the spatial extent of elastically active netwo
strands!. Taking into account the number of network stran

FIG. 3. The relative translation coupling: the movement of n
work crosslinks, locked with respect to the local smectic layer
sition, causes the layer distortion. The matrix displacement com
nent along the layer normalVz has to be the same as the local lay
displacementU.
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per unit volumecx , we can write on the grounds of dimen
sional analysisL'acxkBT/R0

2 ~compare with the rubbe
modulusm5cxkBT). Since chain configurations in the rub
bery state are random walks, we have roughlycx;( lR0

2)21,
with l being the characteristic step length of such a wa
ThusL may be further written as;kBT/( lR0

4). In a typical
polymer the step lengthl;1 nm. Therefore, in a rubber ma
terial with modulusm;105 J/m3 at room temperature (kBT
;4310221 J) the characteristic network span should beR0
;6210 nm and the constantL;2.531021 J/m5.

On the grounds of symmetry we might wish to write a
other coupling term. It is also due to the translational sy
metry breaking of layers and should take the formD0( «̃zz
2“zu)2. Such contribution to the energy density describ
the evident fact that, when the material is stretched along
layer normalz, the layer spacing has to stretch too, dev
tions being penalized by an energy of orderD0. However,
such coupling serves a minor role, being a small addition
a far more important effect—the relative translation coupl
~9! leading to a rigid locking of uniformz strains.

III. THE CALCULATION

The full free-energy density, expressed as a sum of all
contributions discussed above, Eqs.~1!, ~4!, ~6!, ~8!, and~9!,
contains several independent degrees of freedom: the
displacement of elastic networkv(r), the layer displacemen
u(r), and the nematic directorn(r). These fields fluctuate
independently and couple to each other in the free ene
thus affecting the macroscopic response of the system
order to calculate such responses, e.g., an effective el
modulus, one needs to minimize the total free energy w
respect to all other degrees of freedom, in this case—
director and the layer fields. In other words, in order to co
pute a given macroscopic property of a system with mic
structure, one has to integrate out the fluctuations of
microstructure.

In the first instance, we would like to perform the integr
tion over nematic director modes and find the effective fr
energy density of smectic and elastic fieldsv(r) and u(r),
for which the director has found a corresponding lowe
energy strain configuration. The equilibrium properties o
system are determined by the full partition functionZ
5*D n Du Dv exp@2(1/kBT)H(n,u,v)# with the director-
dependent part ofH given by all contributions discussed i
the last section. Carrying out the first step, the integrat
over director fluctuation modesdn, one may use the metho
of steepest descent, which is equivalent to minimizat
dH/dn50 at fixedu(r ) andv(r), and leads to the ‘‘effec-
tive Hamiltonian’’ depending only on these remaining field
This section outlines several examples of such computat

In linear continuum theory, where the free energy is ty
cally a quadratic form in the fluctuating fields, the steepe
descent method is giving an exact result and, therefore,
‘‘integrating out of the fluctuating degrees of freedom’’
mathematically equivalent to the minimization ofH(n,u,v).
This is most easily done in reciprocal space, enabling on
perform the minimization by algebraic manipulations rath
than by solving differential Euler-Lagrange equations. F
lowing the review article@14#, it is convenient to switch into
.
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a cylindrical polar notation with the principal axis along th
initial nematic director, see Fig. 4.

We denote the direction parallel to the initial directorn0
~and the smectic layer normal! asi or z. At a point in recip-
rocal spaceq we denote the direction parallel to†n03@q
3n0#‡ by'. The orthogonal direction in thex-y plane, par-
allel to @n03q# is denoted byt ~for transverse!, see Fig. 4.
All vectors in our new reciprocal space coordinate syst
can now be expressed in terms of the unit vect
ez(q), e'(q), andet(q).

A. Integrating out the nematic director dn

At the first instance, we are interested only in the role
director fluctuationsdn(r), as the field that does not have
relevance for macroscopic observable properties of sme
rubber. Performing the Fourier transformation of those pa
of free-energy density that involvedn, one obtains a free-
energy density inq space

Fq5 1
2 ~D11b'1K1q'

2 1K3qz
2!udnq'u2

1 1
2 ~D11b'1K2q'

2 1K3qz
2!udnq tu2

1 1
2 ~Bqz

21b'q'
2 !uuqu21 1

4 ~ iq'@D11D2# dnq'vq z*

12iq'b'dnq'uq* 1c.c.!

2 1
4 ~D12D2!@ iqz~dnq'vq'

* 1dnq tvq t* !1c.c.#, ~10!

where all three fields are complex functions of the wa
vectorq; c.c. stands for complex conjugate combinations
plicitly arising in the coupling terms. Note that in an ordina
smectic liquid ~with no background rubbery network! the
relative-rotation constantsD1 andD2 are zero and the only
addition to the Frank elasticity is the term proportional
b'5g'q0

2ucu2.
The optimal values for two componentsdnq' and dnq t

are obtained from the quadratic forms in Eq.~10!:

dnq t5
i

2

~D22D1! qzvq t

D11b'1K2q'
2 1K3qz

2
, ~11!

dnq'5
i

2

~D22D1! qzvq'1~D21D1! q'vq z12b'q'uq

D11b'1K1q'
2 1K3qz

2
.

FIG. 4. Geometry of relevant vectors in the problem. The pr
cipal axisz is chosen along the initialn0, with the director deviation
dn perpendicular to it. Two arbitrary axes in thex-y plane are
chosen along the projection of the wave vectorq' ~axis') and
perpendicular to it~the transverse axist).
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In the limiting case when the crosslinking density of t
network is zero, i.e., there is no underlying rubber-elas
matrix, Eqs.~11! reduce to

dnq t50; dnq'' i q'uq

after expansion at small wave vectorq ~continuum deforma-
tions are atuqu!Ab' /K1,3 below theN-A transition where
b'Þ0). In real space this gives, explicitly,dn'2“'u, that
is the average director is tied to the layer normal and rota
with it on deformations. In this case the effective smec
elastic free-energy density takes the form

FsmA5 1
2 ~Bqz

21K1q'
4 !uuqu2, ~12!

which is the Fourier transform of Eq.~7!, the elastic energy
of a lamellar phase. We see that it is indeed the splay Fr
constantK1 of an underlying nematic that controls the lay
curvature term, proportional to the fourth-order gradientq'

4 .
We shall see below that the coupling to a rubbery netw
removes this degeneracy.

Substituting the optimal director modes~11! into Eq.~10!
and only retaining the leading terms in powers of the sm
wave vectorq, we have

Fq5
1

2
Bqz

2uuqu21
b'D1

2~b'1D1!
q'

2 uuqu2

1S b'
2

2~b'1D1!2
K1 q'

4 uuqu2D
1

@b'~D122D2!2D2
2#

8~b'1D1!
qz

2~ uvq'u21uvq tu2!

1
@b'~D112D2!2D2

2#

8~b'1D1!
q'

2 uvq zu2

2
~b'D11D2

2!

4~b'1D1!
q'qz

1
2 @vq'

* vq z1vq z* vq'#

2
b'~D11D2!

2~b'1D1!
q'

2 1
2 @uq* vq z1vq z* uq#

1
b'~D12D2!

2~b'1D1!
q'qz

1
2 @uq* vq'1vq'

* uq#. ~13!

The K1 term is placed in parentheses as it is fourth orde
q. We retain it to illustrate how it would give theKq'

4 in a
normal smectic phase where this represents the leading e
in the layer plane.

Bringing this result together with other contributions
full free energy, which did not contain the fluctuatingdn,
one obtains the effective energy density of a smectic e
tomer depending only on the elastic and layer displaceme
The expression is then converted into real space by matc
the coefficients of the various combinations allowed by sy
metry:

F5Fel1FsmA1Fcoupling. ~14!

The rubber-elastic partFel is determined by the same five
constant expression, Eqs.~1! and ~2!, which is dictated by
the uniaxial symmetry. The only modification is the reno
malized value of the shear modulus
c

s
c

nk

k

ll

n

ect

s-
ts.
ng
-

-

C5
smA5C52

D2
2

8~b'1D1!
. ~15!

This is exactly what one would expect physically, see Fig
as shear in thez-x plane implies a rotation of the directo
with respect to the layers and the elastic matrix. In contr
for the x-y shear corresponding to the coupling constantC4
also pictured in Fig. 5, the director takes a purely pass
role and thus this constant is not renormalized. Note tha
the pure nematic case the analogous renormalization by
rector fluctuations is the combinationC52 1

8 D2
2/D1→0, first

obtained by Olmsted in a study of soft elasticity in nema
rubbers@2#. Clearly, the coupling to smectic layers impos
sufficient constraints on director fluctuations to prevent
complete softness. As expected, the resulting correc
away from softness is then proportional to the degree
smectic order, via the order parameter dependenceb'

;ucu2.
The smectic energy densityFsmA can be brought to the

standard form, Eq.~7!, with a renormalized layer-curvatur
constant:

K5
b'

2

2~b'1D1!2
K1 . ~16!

Finally, the coupling between the rubber-elastic and sme
layer deformations in Eq.~14! takes the explicit form, com-
bining the terms of corresponding symmetry withu(r) and
v(r),

Fcoupling5L@Vz~r!2U~r!#21 1
2 D1@~V2vA!3n0#2

1D2 n0•«̃=•@~V2vA!3n0#

5L@Vz~r!2U~r!#21 1
2 D1~v iz

A 1¹ iu!2

1D2 «zi ~v iz
A 1¹ iu!, ~17!

with the summation overi 5x,y, where vA is the vector
describing the local layer rotation, with components to fi
order vA5(“yu,2“xu,0). Here one finds an importan
contrast with the ordinary smectic expression~7!. To illus-
trate the point, consider the case when no elastic strains
permitted in the rubbery network. Atv50, Eq.~17! reduces
to

FIG. 5. Shearing inx-z plane governed by the modulusC5 and
shearing inx-y plane governed byC4 clearly show how the layer
structure affects the elastic response in the first case but does n
the second.
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Fcoupling→L ~u!21 1
2 D1~“'u!2.

Both terms significantly impede fluctuations of smectic la
ers. For instance, the familiar degeneracy~the leadingq'

4

dependence! is not obtained in the corresponding lamell
rubbery network. In Sec. IV we shall examine this effect
greater detail, taking into account the effect of a fluctuati
rather then zero, elastic fieldv(r).

The coupling constants are now given by the combinat
of underlying nematic relative rotations and the smectic
rameterb';ucu2:

D15
b'D1

b'1D1
and D25

b'D2

b'1D1
. ~18!

In addition to the relative translation term, unique to smec
phases, theD1 coupling penalizes relative rotation of th
layers and the elastic matrix, and theD2 term couples rela-
tive rotations to symmetric strains of the matrix. When t
nematic director is very strongly anchored along the la
normal, the nematic relative rotation (D1,2) is really equiva-
lent to that of a smectic. Accordingly, we may notice that
b'@D1, there is such an equivalence emerging from expr
sions~18!. In the opposite limiting case, when the network
rather rigid and smectic layers present a weaker influen
D1@b' ~which should also be the case near theN-A phase
transition when ucu→0), one obtains a corresponding
weaker coupling,D15b' ; D25b'(D2 /D1).

This section presents a consistent continuum ela
theory of linear elasticity in rubber networks with smectic
lamellar order. All expressions are derived phenomenolo
cally. To complete this description, it is useful to present
effective elastic and coupling constants that derive from
underlying nematic elastomer—for which there exists
molecular-level description, e.g., see the review@1#. This
would also allow some predictive power in estimates of m
nitude of these constants. The constants follow from E
~3!–~5!. For a uniaxial smectic-A rubber one obtains

C152C45cxkBT, C250,

C5
smA5

1

8

b'cxkBT ~r 11!2

cxkBT ~r 21!21b'r
,

D15
b'cxkBT ~r 21!2

cxkBT ~r 21!21b'r
,

D25
b'cxkBT ~12r 2!

cxkBT ~r 21!21b'r
. ~19!

Near the nematic-smectic phase transition, whenb'

5g'q0ucu2 decreases asucu→0, the renormalized shea
modulusC5

smA' 1
8 b'(r 11)2/(r 21)2. Deep in the smectic

phase, atucu→1, we can assume that the magnitude ofb' is
not very different from the layer compression constantB
5giq0ucu2;106 J/m3 in a typical smectic system, which i
usually much greater thanm5cxkBT. In this case the shea
modulus recovers its ‘‘bare’’ value, as given by the origin
expression for a nematic rubber:C5

smA' 1
8 cxkBT (r 11)2/r .
-

,

n
-

c

r

s-

e,

ic

i-
e
e
a

-
s.

l

Similarly, at ucu→1, the model expressions for the smect
rubber coupling constants approach the~large! values char-
acteristic of a nematic elastomeruD1,2u→uD1,2u. When the
smectic or lamellar order is weak,b' , ucu→0, these cou-
pling constants are proportional tob' .

It is also interesting to discuss the case of an elasto
with lamellar microstructure, which does not have an und
lying nematic order: a lyotropic lamellar phase, or a m
crophase separated block-copolymer crosslinked into a
bery network. The analysis of this section, including the fre
energy density expressions~14! and the relations betwee
the moduli, remain valid. However, the backbone chain
isotropy (r 21)5( l i/ l'21), which is a measure of ‘‘nem
atic order parameter’’Q, is now directly given by the emerg
ing lamellar density modulation:Q;ucu2. One then might
expect unusual mechanical anomalies when the ratiob' /(r
21)2;1/ucu2 may actually grow near the transition. The
will be no physical divergence since the transition direc
from isotropic into the smectic phase has to be first order,
symmetry. Nevertheless, a substantial hardening of cer
mechanical modes may be registered as a lamellar ru
approaches its isotropic phase.

B. Integrating out the layer structure

We now proceed to integrate out the fluctuations of
layer structure, in a similar fashion to the previous secti
We would thus like to determine the effective mechani
response of a smectic rubber when the layers are allowe
fluctuate freely and adopt the optimal conformation that lo
ers the total free energy~14!. The effective equilibrium
rubber-elastic energy is obtained by integrating out the la
fluctuation modes in reciprocal space,u(q) with zero mean.
Strictly, the result of such optimization depends on the m
nitude and geometry of imposed strains«̃ i j , externally ap-
plied to the sample. However, we are presently only int
ested in effective rubber-elastic moduli, which a
determined by the effectiveequilibrium energy with no ex-
ternally imposed deformations. The result of such calculat
should be quite general and, again, equally applicable
thermotropic smectic-A elastomers, lyotropic lamellar gels o
crosslinked polysurfactants, and lamellar phases of block
polymers.

We write the Fourier transform of the free-energy dens
and then minimize it with respect to the smectic layer flu
tuation modesu(q). In the leading approximations of expan
sion at small wave vectors, the resulting optimal layer mo
are given by

uq5vq z2
B

2L
qz

2vq z2
~D12D2!

4L
q'~q'vq z1qzvq'!1•••,

u~r!'vz1
B

2L S ]«zz

]z D1
~D12D2!

2L S ]«xz

]x
1

]«yz

]y D .

~20!

The parameter of such expansion is, as one can see from
ratio of terms in Eq.~20!, ;(B/L)qz

2 or (m/L)q'
2 . For the

second term it is straightforward to check that the series
pansion is valid whenq'!1/R0 , the inverse network span
which should be easily satisfied in any practical situatio
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The relation is less obvious, and the condition on the lo
wavelength more demanding, for deformations along
layer normal because one often finds a large layer comp
sion constant,B@m, especially in weakly crosslinked gel
The corrections tou'vz would become relevant for defor
mations alongz with wavelength>AL/B.

Putting the optimal value for the layer fluctuation mo
back to Eq.~14! and rearranging the terms, one obtains
effective elastic energy density of a smectic elastomer in
form of Fel of the Eqs.~1! and ~2!. Of course, nothing else
but the same five elastic terms in the uniaxial medium co
have been expected on the symmetry grounds. The ru
elastic constants are renormalized by smectic fluctuat
and acquire the effective values:

Bulk moduli C3
eff5C31 1

18 B, C2
eff5C21 1

6 B,

Shear moduli C1
eff5C11 1

2 B, C4
eff5C4 ,

C5
eff5C5

smA1 1
8 ~D122D2!, ~21!

whereC5
smA is given by expression~15! and, of course, one

can safely neglect the correction to the main bulk modu
C3.

To complete, and again make a connection with the m
lecular theory of nematic elastomers, let us present the ef
tive rubber moduli of a smectic elastomer through the mo
microscopic expressions~3!–~5!. We thus obtain

C1
eff5 1

2 B1cxkBT, C2
eff5 1

6 B,

C4
eff5 1

2 cxkBT, C5
eff5 1

2

b'r 2cxkBT

cxkBT ~r 21!21b'r
. ~22!

As before, near the nematic-smectic phase transition
shear modulusC5

eff;b'→0. Deep in the smectic phas
C5

eff→cxkBT(r /2).
The most important effect is the asymmetric renormali

tion of the shear moduliC1 andC4. Taking a typical smectic
value B;106 J/m3, much greater than a typicalcxkBT
;1042105 J/m3, one finds the effective modulusC1@C4 in
a thermotropic smectic elastomer.

Appendix A gives details of calculation of the two effe
tive elastic response moduli,m i andm' , that determine the
force on stretching the smectic elastomer along, and per
dicular to the layer normalz. These cases are shown in Fig
6~a! and 6~b!. An isotropic rubber stretched by an amount«
in one direction contracts symmetrically by2 1

2 « in the two
perpendicular directions~or l and 1/Al in terms of Cauchy
strains! and responds with a modulusm053cxkBT. On
stretching the monodomain smectic in the layer plane («xx
imposed! the elastic response is given by the modulus

m'5
8C4~C11C4!

C112C4
→8C4;4cxkBT,

a usual rubber-elastic shear scale. The incompressibi
driven contraction along the layer normalz is resisted by the
effective modulus;C5.B, insisting that the layer spacin
d0 remains constant. Because the ratio of the effec
moduli is large, no noticeable contraction along the la
g
e
s-

e
e

d
er
s

s

-
c-
l

e

-

n-
.

y-

e
r

normal would take place:«zz→0, see Fig. 6~a!. Therefore,
the sample thickness~into the page in Fig. 6! must decrease
more:«yy→2«xx .

In the reverse situation, when the sample is stretc
along the layer normal («zz imposed! the measured effective
modulus is

m i52~C11C4!→2C1;B,

much higher than a normal rubber response. Both perp
dicular directions in the layer plane are now equivalent a
experience the usual volume conserving contraction«yy
5«xx52 1

2 «zz. In this geometry, however, the material wi
be able to find a lower-energy deformation mode: t
Helfrich-Hurault type of layer buckling instability discusse
in a number of papers@13,19,20# and resulting in an optically
opaque scattering state in experiments@21,22#, see Fig. 6~b!.

IV. LAYER STRUCTURE IN SMECTIC ELASTOMERS

We now continue to study the properties of smectic el
tomers in equilibrium, when no external deformation is a
plied and the sample preserves its overall shape. In the
vious section we obtained effective rubber-elastic mod
which were renormalized by the freely fluctuating smec
layers whose only constraint was the coupling to the polym
network.

Let us examine the opposite strategy. The smectic-la
degree of freedomu(r) can be easily monitored and is ofte
the subject of an experimental study by optical or x-r
methods. The reason for this interest, apart from the prac
attraction in manipulating the optical birefringence, is t
fundamental problem of the thermodynamics of a on
dimensional crystalline lattice. The problem can be summ
rized as follows. A translational symmetry breaking in o
dimension only~i.e., a system of parallel equidistant laye
with no interlayer structure: a smectic-A) has, by symmetry,
the degenerate elastic energy density expressed by Eq.~7! or
~12! in real and Fourier space, respectively. Assuming r

FIG. 6. Stretching the monodomain smectic elastomer~vertical
in both sketches and images!: imposed strain~a! «xx—in the layer
plane, vertical in the picture and~b! «zz—along the layer normal. In
the first case the high-modulus resistance to layer compression
vents the sample from changing itsz dimension. In the second cas
the directions perpendicular to the imposed strain offer no s
resistance and«xx'2

1
2 «zz. This holds for small strains. However

at a higher strain the smectic finds a lower-energy deformation p
layer buckling via the Helfrich-Hurault instability. The images a
courtesy of Nishikawa and Finkelmann.
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sonably long-wavelength deformations, the equipartit
theorem of thermodynamics tells us that each mode of la
fluctuationu(q) has a mean-square average

^uuqu2&5
VkBT

B qz
21K q'

4
. ~23!

Since layer fluctuations in the plane are penalized b
higher power of displacement gradient, the fluctuation mo
have a much higher amplitude atq→0 than in a usual three
dimensional solid~where the analogous mean-square av
age is proportional tokBT/C q2). The quality of order in a
lattice is determined by the correlation of its fluctuations
real space. In a smectic one-dimensional lattice such fluc
tions correlate over large distances: a direct integration gi
e.g.,@24#,

^u~0!u~r!&5E kBT

B qz
21Kq'

4
e2 i (q•r)

d3q

~2p!3

;5
kBT

~B K!1/2
ln~r z! if r'50

kBT

~B K!1/2
ln~r'! if r z50.

~24!

This weak logarithmic divergence is known as t
Landau-Peierls effect. It corresponds to the slow, power-
decay of the structure factorS(r ), defined here as the corre
lation of density fluctuations, ^exp(iq0@u(r)2u(0)#)&
5exp(21

2q0
2^@u(r)2u(0)#2&), with the wave vector q0

52p/d0 , and signifies the marginal case between the t
crystalline or bond orientational order, with the structure fa
tor constant asr→`, and a short-range order of liquids wit
rapidly decayingS(r );e2r /j.

Such an effect is directly seen on x-ray scattering exp
ments, where the diffraction from smectic layer dens
modulation generates a peak in reciprocal space atqo
52p/d0 . The scattering intensityI (q) is proportional to the
Fourier transform ofS(r ) and thus reflects the nature o
correlations in the system. In a crystalline lattice with lon
range order, the Bragg reflections are nominally delta fu
tions, I (q);d(q2q0) at each reciprocal lattice vector@23#,
which are broadened by the diffusive scattering and mo
lated by the Debye-Waller factor;exp@2p2kBT/d0

3C#, a
measure of thermal fluctuations. Quasi-long-range order
one-dimensional smectic lattice results in the famous exp
sion for the scattering intensity@24#

I n~qz , q'50!;
1

~qz2nq0!22hn2

and

I ~qz50,q'!;
1

q'
422hn2 . ~25!

The anisotropic power-law decay describes the inten
around the peak position, near the nematic-smectic trans
n
er

a
s

r-

a-
s,

w

e
-

i-

-
-

-

a
s-

ty
on

with the exponent h(T)5(1/8p)q0
2(kBT/AB K). When

hn2.2 there is no singularity in the scattering intensity
all. Thus high-order peaks are suppressed and in fact usu
only the first-order peak is observed experimentally. Pre
sion x-ray scattering experiments, beginning from the wo
of Als-Nielsenet al. @25–27#, have confirmed this prediction
and the following critical behavior of smectic liquid crystal
dominated by thermal fluctuations. We expect that in sme
elastomers and gels, due to the coupling to the rubbery
work, these fluctuations will be reduced. We shall see t
the elastic matrix of the smectic elastomers reestablis
long-range order so fluctuations merely attenuate the
range of Bragg scattering peaks.

Similar to the treatment in the previous section, we ne
to find an effective Hamiltonian of the smectic elastom
system, described by the layer phase variableu(r) or its
Fourier modesu(q). To do this, we need to integrate out th
unconstrained fluctuations of the elastic deformation fi
v(q)—the phonon modes in the equilibrium rubbery ne
work. We consider mechanically undistorted elastomers:
results are different when an elastic strain is imposed in
system and will be reported in a different publication.

The details of the calculation are given in Appendix
The Fourier transform of the free-energy density~14!, which
depends on bothv(q) and u(q), can be arranged as a qu
dratic form:

F5 1
2 vq•GÄ~q!•vq* 2G~q!•@vq uq* 1vq* uq#1 1

2 M~q!uuqu2.

~26!

The optimal modes of network deformationsvq are obtained
by minimization of this quadratic form producing a vect
displacement ofvq52(GÄ

21
•G) uq , which is rather cumber-

some. We examine the expression as an illustration in
limit qz /q'!1, that is for modes that lay almost along th
plane of the layers:

vq z'F11
1

8L
~D128C5!q'

2 1
1

4L
~D12D2!qz

21•••Guq ,

vq''H F12
1

8L
~D11D2!q'

2 G~qz /q'!1•••J uq ,

vq t50. ~27!

This shows the expected behavior, that for smallq, one
obtainsvz5u, that is the normal displacement of the elas
matrix becomes rigidly fixed to layers. Also in the same lim
vq'5(qz /q')uq , vq t50 or in real space]vx /]x5]u/]z,
v t50 showing that the material appears incompressible
these modes.

The effective free-energy density, evaluated at the optim
configuration of network phonons, and simplified as d
scribed in Appendix B, becomes
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Feff'
1

2 F8C5
effqz

41~8C5
smA23D122D2!q'

4 22~2D122D2!qz
2q'

2

4q'
2 1~4C5

eff/C3!qz
21~4C5

eff/L!qz
4

1Bqz
2G uuqu2,

where

C5
eff5C5

smA1 1
8 ~D122D2!, ~28!
m

io
it

r
th

the
ctly
he

in
cf. Eq. ~21!. Note that the term;(C5 /C3)qz
2 in the denomi-

nator cannot be neglected in spite of the nominal inco
pressibility. One may encounter a situation whenq'50,
when this term will become the leading effect. Express
~28! may still appear cumbersome, but it is easy to study
implications in the two limiting cases,qz→0 and q'→0
separately. These two limits, in which the results can be p
sented in a simple intuitive way, are also the focus of
of

.

th

c-

to
xt
-

n
s

e-
e

classical theories and experiments on smectic-A liquid crys-
tals. The mean-square layer fluctuation, remaining after
elastomer penalty has been implemented, follows dire
from Eq. ~28!. The result depends on the orientation of t
fluctuation mode.

In the most common caseq' /qz@AC5 /C3 the bulk
modulusC3 cancels from the numerator and denominator
Eq. ~28!, giving:
^uu~q!u2&''
V kBT

B* qz
212C5* q'

2 12C5
eff@qz

4/q'
2 #

5
V kBT

q2

sin2u

2C5
eff1~B* 24C5

eff!sin2u2~B* 22C5
eff22C5* !sin4u

,

where

B* 5B2D11D2 , C5* 5C2
smA2 1

8 ~3D112D2! ~29!
d by

of
ns

et-
ctic

by

er
hen
ulk

r
he
n
re-
be
s
in

le
and u@AC5 /C3 is the angle between the wave vector
deformationq and the layer normalz, see Fig. 4. One can
verify that the kernel of Eq.~28! and the denominator of Eq
~29! are positive for all directions ofq, even though some
combinations ofB, C5

smA, D1, andD2 may be negative.
In the case when the wave vector is almost parallel to

layer normal,q' /qz!AC5 /C3!1, the bulk modulus domi-
nates the fluctuation spectrum:

^uv~q!u2&z'V kBT
11~C3 /L!qz

2

C3qz
2

→ V kBT

C3qz
2

at uqu'qz!AL/C3 ~30!

→ V kBT

L
5const at qz@AL/C3

~still very small: qz!q0!. ~31!

The regime~30! occurs inside the narrow cone of wave ve
tor directions, given by the conditionu.AC5 /C3. For a
typical elastomer this amounts tou!0.6°, or even less when
the smectic order is weak andC5

smA;c2. This essentially
means pure compression modes along the layer normal.

The border between the bulk compressibility response
longitudinal distortion and the, unusual in this conte
‘‘masslike’’ response ~31! occurs at qz* ;AL/C3

;@100R0#21. In the case of weak smectic orderqz* ;c and,
e

a
,

therefore, both types of behavior can be readily accesse
a detailed experiment on layer compression extension.

Physical reasons for having the effective smectic-A elastic
energy~28! proportional to an overall square power;q2 are
quite transparent and follow directly from the main feature
smectic order in a rubbery network—the relative translatio
coupling~9!. In a liquid smectic, only layer curvature“'

2 u is
elastically penalized. When there is an underlying elastic n
work, coupled to the layer displacement, the usual sme
degeneracy with respect to uniform layer rotations“'u is
lost and we obtain the solidlike elastic energy, Eq.~28!.
Naturally, the renormalization is determined solely
rubber-elastic parameters: the shear modulusC5 and cou-
pling constantsD. The special case is the longitudinal lay
deformation of an incompressible smectic elastomer, w
the system becomes very rigid indeed, controlled by the b
modulus effects.

Equations~29! and~30! also tell us that there is no longe
a Landau-Peierls instability of smectic fluctuations. T
logarithmic divergence of the correlation functio
^u(0)u(r)& is suppressed by the network elasticity. The
fore the x-ray scattering on smectic layers will no longer
purely diffusive, but will take a usual form of Bragg peak
with a thermal Debye-Waller factor. Scattering intensity
reciprocal space will take the form

I ~q!5E d3r eiq•r^r~0!r~r!&5E d3rei (q2q0)•rS~r!

~32!

for the first-order reflection peak in an ideally infinite samp
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~so that no additional finite-size peak broadening occurs!. In
an ordinary smectic, one obtains from the logarithmic div
gence~24! @24#. In contrast, in an ideal defect-free smec
elastomer the diffusive scattering is far less important. T
primary effect in the structure factor is a Debye-Waller co
stant given by direct integration of Eqs.~29! and ~30!.

The x-ray scattering intensity~32! becomes modulated b
the Debye-Waller factor

;expF2
1

2

4p2

d0
2 ^uuu2&G ,

where the mean-square fluctuation of layers is given by E
~34! and~35!. For each consecutiven-order peak one obtain

I ~q!.(
n

dS qz2
2pn

d0
De2(1/2)(4p2n2)/d0

2^uu2u&. ~33!

Far from the smectic-nematic transition, when the la
compression constant is large,B@C5, one obtains

^uuu2&'
kBT

d0AC5* B
, ~34!

whereC5* is defined in Eq.~29!.
The limiting case,C5

eff/B@1, can be achieved in a highl
nonsoft elastomer, where the condition thatC5

eff;ucu2 is not
satisfied but the smectic layer compressionB and the
relative-rotation couplings,D1 and D2 ~which are propor-
tional to b') are still ;ucu2. Then, in a network with a
relatively high degree of crosslinking, near the smec
phase-transition point whereB,D1 ,D2→0, the mean-square
fluctuation becomes

^uuu2&;
kBT

pd04C5
. ~35!

Qualitatively, neglecting all effects of potential softnes
uniaxial anisotropy and layering, all rubber moduliCi;m

5cxkBT. We have then for the Debye-Waller factore2n2W

in Eq. ~33!: W.(4p2/d0
2)Al /cx ;( lR0 /d0

2) ~where l is a
characteristic size of a mesogenic monomer!. At cx→0
~strictly, below the network percolation limit! the Debye-
Waller exponent diverges and thus suppresses the B
peak in the x-ray scattering intensity. The usual smectiA
diffusive scattering would then prevail.

Precision x-ray scattering requires a very narrow disp
sion of the incident beamI (q) in order to resolve the line
shape of a smectic diffraction peak~Fig. 7!. This is usually
achieved by multiple-Bragg reflection in the monochroma
and the analyzer crystals. A study of long-range order i
monodomain, side-chain, polymer smectic-A system capable
of forming an elastomer by photocrosslinking has been p
formed recently by Wonget al. @28#. The freely standing
films of smectic-A polymer were aligned in a magnetic field
Good monodomain orientation has been achieved, with
layer mosaic not exceeding 2.5° for the elastomer and 4
for the uncrosslinked polymer. The measurements us
triple-reflection channel-cut Si crystals have achieved
incident-beam dispersion of;1/q3.6, sufficiently narrow to
-

e
-

s.

r

c

,

gg

r-

r
a

r-

e
°
g
n

resolve the difference between Bragg and Caille diffracti
The results produced a line shape for a smectic elasto
I (qz);1/q2.4 in a broad range of wave vectors down to t
resolution limit of several inverse micrometers. In contra
the same polymer material not crosslinked into the netwo
under the same conditions, shows the intensity profileI (qz)
;1/q1.85. As expected, this is somewhat less than the th
retical limit of 1/q2 for the Landau-Peierls quasi-long-rang
order, cf. Eq.~25!.

Equation~33! describes the reduction in each consecut
Bragg peak intensity arising from thermal fluctuations co
trolled by the effective Hamiltonian~28!. In real smectic
elastomers, there are quenched random undulations of
smectic layers that result from the random nature of
crosslinking of the underlying network. These random und
lations would lead to further reductions in Bragg peak inte
sity, but will not destroy the true long-range order in th
periodic one-dimensional lamellar lattice. Quenched rand
distortions will also lead to additional diffuse scattering a
the corresponding broadening of Bragg peaks.

V. CONCLUSIONS

We modeled the behavior of a smectic-A elastomer using
a continuum expansion of the free energy in the small de
mation limit. Interesting properties of this system, an elas
medium with a periodic layer microstructure, arise from t
interplay between the two degrees of freedom, namely,
local displacement of the elastic matrix, and that of the sm
tic layers. Our results may thus be broken down into t
groups. The first group details the effect of the smectic
grees of freedom on the macroscopic elastic properties of
system, namely, the elastic response and the moduli, sum
rized by the uniaxial Eq.~2! and the constants~21!. The
second group of results, in Sec. IV, describes the effect
the elastic matrix on the fluctuations of the smectic lay
and, ultimately, on the state of lamellar order.

We determined the change in the elastic moduli due to
liquid-crystalline degrees of freedom by integrating out t
fluctuations of the director and of the layer displacemen
We also examined these changes using particular value
material constants derived from a molecular model for
underlying nematic elastomer system@1#. We found, unsur-
prisingly, that the presence of smectic layers destroys

FIG. 7. X-ray scattering of an aligned smectic elastomer:~a! a
3D projection of calculated scattering intensity, modulated by
Debye-Waller factor, Eq.~33!; ~b! the experimental image illus
trates the high degree of orientational~nematic! order of mesogenic
groups in the wide angles and the smectic~lamellar! order of layers
with a number of multiple-order reflections in small angles. Ima
courtesy of R. Zentel.
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conditions required for soft nematic rubber elasticity. T
effect of the renormalization of elastic moduli was negligib
in the case of the bulk modulus but substantial—increas
them by an order of magnitude—in the case of two of
shear moduliC1 ,C2. The third shear modulusC4 was un-
changed leading to a large effective anisotropy in the aver
macroscopic elastic properties. This explains the large
isotropy found in the response moduli measured by Ni
ikawa and Finkelmann@21,22#.

We determined the damping effect of the rubber-ela
matrix on the fluctuations of the smectic layers, improvi
the initial description given in Ref.@10#. In ordinary smec-
tics, fluctuations only permit the existence of a quasi-lon
range order in a one-dimensionally periodic layer stack. T
elastic matrix, in which such layers are embedded in
case, was found to suppress these fluctuations, resultin
true long-range order being established. Precision x-ray
fraction experiments confirm this observation in re
smectic-A elastomers, exhibiting many visible orders
Bragg peaks. The Debye-Waller factors, determining the
tenuation of consecutive Bragg peaks, are calculated in
limiting cases: well within the smectic phase, and in the c
of a highly nonsoft material near the nematic-smecticA
phase transition.

In conclusion, one should point out that an elastome
material should allow large deformations to be sustaina
The present paper is confined to the limit of small strains
only describes the near-equilibrium response of the mate
However, as in classical rubbers and solid crystals, one c
make conjectures about the behavior at larger deformati
For certain strains~extensions or shears! in the layer plane
there is no significant change due to the presence of lam
order and a normal rubber-elastic response is expecte
persist. Other deformations, such as an extension along
layer normal, are strongly affected by smectic density mo
lation and the high-modulus linear response predicted in
paper cannot exist for a large range of strains expected
rubber. The Helfrich-Hurault instability occurs in the nonli
ear regime and the layer system buckles in a periodic fa
ion, thus providing a lower-energy route to accommodate
strain «̃zz.
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APPENDIX A: EFFECTIVE ELASTIC MODULI µ i AND µ�

Consider two cases when a uniform extension is app
to a sample of monodomain smectic rubber, Fig. 6, in
two orthogonal principal orientations of layers. In this pap
we only consider the infinitesimally small strains so that
effects of director or layer rotations are to be considered
the chosen orientations. Both geometries prevent ma
scopic shear strains and the only relevant components of«̃ab
are
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S «xx2
1
3 Tr@«= # 0 0

0 «yy2
1
3 Tr@«= # 0

0 0 «zz2
1
3 Tr@«= #

D
~with Tr@«= #5«xx1«yy1«zz). We continue using a conven
tion that the undistorted layer normalk5n0 is along thez
axis. The effective elastic energy, e.g., Eq.~2!, is explicitly
written in terms of the components of strain:

Felastic5C1~ 2
3 «zz2

1
3 «xx2

1
3 «yy!

212C2~«xx1«yy1«zz!

3~ 2
3 «zz2

1
3 «xx2

1
3 «yy!1C3~«xx1«yy1«zz!

2

12C4@~ 2
3 «xx2

1
3 «yy2

1
3 «zz!

2

1~ 2
3 «yy2

1
3 «xx2

1
3 «zz!

2#, ~A1!

where all moduli are taking their renormalized, effective v
ues, Eq.~21!.

In the case shown in Fig. 6~a!, in-plane stretching, the
strain «xx[« is imposed. Two other components are o
tained by minimization of the energy~A1!. Neglecting terms
proportional tom/C3, i.e., assuming full incompressibility
we have

«yy'2
C1

C112C4
«; «zz'2

2C4

C112C4
«; ~A2!

«yy→2«; «zz→0 at C1@C4

as illustrated in Fig. 6~a!. At these optimal values of volume
conserving strains, the rise in elastic energy in respons
the imposed strain« is given by

F* '4
C4~C11C4!

C112C4
«2

and, thus, the measured modulus

m'5
8C4~C11C4!

C112C4
→8C4;4cxkBT.

In the case shown in Fig. 6~b!, stretching along the laye
normal z, the strain«zz[« is imposed. Minimization with
respect to two other components of strain gives

«xx'2 1
2 «; «yy'2 1

2 «, ~A3!

the expected symmetric transverse contraction, as one fi
in any isotropic incompressible material, see Fig. 6~b!. The
energy response to the imposed« is now

F* '~C11C4! «2

and the effective longitudinal modulus

m i52~C11C4!→2C1;B,

the smectic layer compression constant.
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APPENDIX B: INTEGRATING OUT RUBBER-ELASTIC
PHONONS

The Fourier transform of the free-energy density~14!,
which depends on bothv(q) andu(q), can be arranged as
quadratic form, Eq.~26!, where the matrix elements ar
given by

vq5S vq z

vq'

vq t

D , G5S L1 1
8 ~D112D2!q'

2

2 1
8 ~D122D2!qzq'

0
D , ~B1!

Gzz'2L1C3qz
21 1

4 ~8C51D112D2!qz
2 ,

G'''C3q'
2 1 1

4 ~8C51D122D2!qz
2

Gtt52C4q'
2 1 1

4 ~8C51D122D2!qz
2 ,

G'z5Gz''C3qzq' ,

G't5Gt '5Gzt5Gtz50, ~B2!

where the similar terms were neglected when appearing
to the bulk modulusC3 ~assuming, as always,C5 /C3!1)
and the shear modulusC5

smA is already renormalized by nem
l-

m

ol.

s

-

xt

atic director fluctuation modes. The coefficient penalizi
the ‘‘bare’’ layer fluctuationsu(q) in Eq. ~26! is given by

M52L1Bqz
21D1q'

2 1K̃q'
4 ~B3!

~with K̃5@b'
2 /(b'1D1)2#K1). However, one expects it to

change significantly when the rubber-elasticv(q) modes are
integrated out.

The further calculation is straightforward and was alrea
performed on other occasions: minimizing the quadra
form ~26! we obtain the optimal modes of network deform
tions, e.g., herevq52(GÄ

21
•G) uq and the minimal~effec-

tive! free-energy density becomes

Feff5
1

2 FM~q!24
GzzG'

2 22Gz'GzG'1G''Gz
2

GzzG''2Gz'
2 G uuqu2.

The full expression, with matrix elements explicitly put in,
tedious but there are possible simplifying approximatio
due to the large bulk modulus~as always, neglecting terms o
orderC5 /C3) and the constraint of small wave vectors~ex-
plicitly estimated asq!AL/m;1/R0 , the network span!.
After these are implemented, we have the effective ene
density
Feff'
1

2F 8C5
effqz

41~8C523D12D2!q'
4 22~2D12D2!qz

2q'
2

4q'
2 1S 4C5

eff

C3
Dqz

21S 4C5
eff

L Dqz
4

1Bqz
2G uuqu2, ~B4!

where

C5
eff5C5

smA1 1
8 ~D122D2!,

cf. Eq. ~21!.
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